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We first solve equations (28) and (29) for 8 and 
(1/D)+FI(e). The value of e is then substituted in 
equations (26) and (27) to yield estimates of ( I /D)+  
F3(e) and (1/O)+Fz(e). Eliminating (l/D) from each 
of the two pairs of equations, we can evaluate two 
independent combinations of Fl(e), F2(e) and Fa(e), 
say Fl (e) -F2(e)  and F2(c0-F3(e). These could then be 
utilized along with estimates of three other compound 
fault parameters obtained from other measurements, 
say profile peak shift and profile asymmetry for the 
10i4, 1015 and 10i7 reflexions to enable a complete 
evaluation of the fault probabilities to be made. 

The author is grateful to Professor E. Gebhardt for 
working facilities and to the Alexander von Humboldt  
Foundation for the award of a fellowship. 
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The distortion of an observed coordination polyhedron can be evaluated from a comparison of this 
polyhedron with the least-squares best-fit polyhedron with optimum location, orientation, size param- 
eters and prescribed symmetry. A set of atoms at positions, x(1) . . . .  x(n), may be fitted to the set 
y(1) . . . .  y(n) by rearranging the matrix equations: 

y(i)=t+R~(i)x(i) (i= 1,n) 

and solving for the unknown parameters of the translation vector, t, the rotation matrix, R, and the 
(diagonal) dilation matrices, 2(i), which optimize the fit between the two sets. The elements of the (one 
or more) dilation matrices may be constrained to fix the fitted set to the desired symmetry. The solution 
is effected by means of a two-stage iterative least-squares technique employing the so-called 'small- 
angle' rotation matrix. The average distance between corresponding atoms of the two sets, which is a 
minimum at the point of optimum fit, provides a unique one-parameter characterization of the degree 
of distortion between the two configurations. The magnitudes of the operations needed to produce the 
best fit are also recoverable from the least-squares solution. 

Introduction 

Coordination polyhedra observed in crystal structures 
are, more often than not, distorted to some degree 
from their ideal configurations. The extent of this dis- 
tortion is a significant crystal chemical parameter. It 
is, however, difficult to determine quantitatively. 
Several methods of characterizing such distortion have 
been suggested (see, e.g., Robinson, Gibbs & Ribbe, 
1971) and, in general, are measures of the spread of 

interatomic distances or angles about their means or 
ideal values. Undoubtedly such variation in bond 
length and angles does increase from undistorted to 
more distorted polyhedra. It is, however, not un- 
common to encounter real polyhedra, which are dis- 
torted from some ideal configuration, but yet have all 
bond lengths equal or all bond angles equal to those of 
the ideal configuration. Furthermore, it may be de- 
sirable to know the degree of distortion relative to a 
lower symmetry subgroup of the ideal configuration, 

A C 30.4, - 4* 
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e.g., how closely does an observed polyhedron conform 
to a trigonally distorted octahedron? Lastly, the coor- 
dinates (fractional or Cartesian) of the optimum fitted 
set are useful in examining the distortion. 

In comparing the coordinates of one set of points 
with another, the first may be held fixed and the 
second set 'adjusted' to optimize the fit. The 'adjust- 
ments' that must be considered are (rigid) rotation of 
the entire set and (rigid) translation of the entire set. A 
combination of these two operations is sufficient to 
bring identical sets into coincidence and similar sets 
into an optimum fit. In some cases it is advantageous to 
consider in addition the operation of dilation. If an 
ideal tetrahedron is to be fitted to any observed pseudo- 
tetrahedron, the question arises, what size should the 
ideal tetrahedron be? By choosing the size so as to 
optimize the fit between the two sets, the operation of 
dilation is introduced. In general, different dilation 
coefficients may be applied to different groups of 
atoms. For example, it is necessary to use two inde- 
pendent dilation coefficients in determining the best 
fit of a trigonal dipyramid to an observed fivefold 
coordination polyhedron - one dilation coefficient for 
the three equatorial atoms and a second for the two 
axial atoms of the group. As discussed in more detail 
below, it is sometimes necessary in fitting lower-symme- 
try polyhedra to employ anisotropic dilation, where, 
for example, the x- and y-axis coordinates are dilated 
independently of the z-axis coordinates. Thus the 
problem of fitting one set to another leads to a search 
for the translation, rotation, and dilation operations 
which, when applied to one set, optimize its fit with the 
other. 

Mathematical methods 
The Cartesian coordinates of the n vertices of the two 
polyhedra, y(i) and x(i), i=  1, n, define the two vector 
sets Y and X. Let Y remain fixed and let X J be the 
vector set (the right superscript identifies the iteration 
cycle) produced from the original set, X °, by the opera- 
tions of translation, rotation, and dilation: 

xJ( i )=t+R2(i)x°( i) ,  i= 1,n, (1) 

where t represents the translation vector, R is the rota- 
tion matrix and 2(0 is the dilation matrix applied to 
the ith vector. The elements of these matrices are: 

where dr are independent (anisotropic) dilation coeffi- 
cients. If the vectors, x(a) and x(b) are symmetry equiv- 
alent then ;~(a)= 2(b), etc. 

Let u(i) be defined as the vector separating the ith 
vector of the fixed set and the corresponding vector of 
the rotated set, i.e. : 

u ( i )=y( i ) -xJ ( i ) .  (2) 

A measure of the goodness-of-fit between sets, Y and 
X J, is then given by U, 

U= ~ [u(i)] 2. (3) 
i = I  

If the operations, t, R and 2 are chosen to minimize U, 
the resulting translated-rotated-dilated set, X ~, may be 
said to be 'best-fit' to the set, Y, in a least-squares sense. 
These desired values of t, R, and 2 may be determined 
through the rearrangement and (non-linear) least- 
squares solution of equations: 

y ( i )= t  +R2(i)x°(i), i= 1,n. (4) 

The translation component, t, may be easily elim- 
inated. Equation (3) may be expanded: 

U= ~ {y(i)-- [t + R2(i)x°(i)]} 2. (5) 
i = 1  

The value of t which will minimize U is evidently given 
by differentiating U with respect to t and setting this 
expression equal to zero: 

- 2 [ y ( i ) - R 2 ( i ) x ° ( i ) - t ] = O .  (6) 
i=1  

Rearranging gives: 

1 ~ 1 ~ R2(i)xO(i)" (7) t =  - Y ( i ) -  n 
F/ i = 1  i = 1  

That is, t is merely the translation vector that relates 
the centroids of the two sets, and if Y and X ° are so 
chosen that the centroids of Y and R2(i)X ° are at the 
origin of coordinates, then t vanishes, and equation (4) 
reduces to 

y(i)=R2(i)x°(i),  i= 1,n, (8, 

R_- 

/z + (1 - /2)  cos 0 

ml(1 - c o s  O)+n sin 0 

nl(1 - c o s  O ) - m  sin 0 

lm(1 - cos 0) - n sin 0 

m z + (1 - m 2) cos 0 

nm(l - c o s  O)+l sin 0 

ln(1 - cos 0) + m sin 0 \ 

mn(1 - c o s  O ) - I  sin 0 ) 
n 2 + (1 - n 2) cos 0 

for a counterclockwise rotation of 0 around an axis 
with direction cosines, l, m,n. In the most general case 
the dilation matrices have the diagonal form, 

(i 2(0 = dz 
0 d3 

where Y and X ° are centered sets. 
After elimination of t, the remaining variables R and 

2(0 may be determined, in the most general case, by a 
two-step iterative least-squares procedure. The solu- 
tion makes use of an approximation of the rotation 
matrix, called the small-angle or infinitesimal rotation 
matrix (see, e.g., Thompson, 1969). If the rotation 
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angle, 0, is small then, cos 0 ~ 1 and the R matrix given 
above can be approximated by the matrix: 

1 0 -nO mO) 
S= 1 - 10 

- 1 0  1 . 

Stage 1: The (diagonal) components of the dilation 
matrices are set to unity and the true rotation matrix 
R is replaced by the approximation S, whereby equa- 
tion (8) can be rewritten: 

y(i)=Sx°(i), i= 1,n. (9) 

These equations are linear in the components of S 
(which is not the case for R) and may be rearranged in 
the matrix form Y = CP with matrix elements: 

0 Xt3 -- Xi2 
- -  x~3 0 x ~  

Xi2 -- Xil 0 

y i l - x i l  
Y~2- x~2 
Y/3 -- xi3 

[,0] 
mO .(10) 
nO 

This matrix equation is solved by the usual least- 
squares methods for an estimate of the parameter 
matrix: 

P = ( C C ) - ' C Y  (11) 

where the tilde represents the transposed matrix. The 
rotation parameters may then be separated: 

0 = {(10) 2 + ( m 0 )  2+(//0)2} 1/2, and l=(lO)/O, etc. 
These parameters are used to construct the first 
estimate of the rotation matrix, R. 

Stage 2: Employing the R matrix determined in the 
first stage, equation (8) can be rearranged to a set of 
equations, again in matrix form Y--CP,  

for an example with two different anisotropic dilation 
matrices. These equations are solved by least-squares 
methods to give first estimates of the dilation matrix 
elements which, in turn, are used to construct the better 
fitted set: 

x l ( i )=R2(i)x°( i ) ,  i= 1,n. (13) 

The next iteration is begun by replacing X ° in equa- 
tion (8) by the set X 1 (recentered, if necessary) pro- 
ceeding as above, which yields a new rotation matrix 
and new dilation matrix elements. These new opera- 
tions may then be applied to set X 1 to give an even better 
fit set X 2, analogous to equation (13). Conversely an 
overall rotation can be formed from the product of the 
rotation matrices determined in the first and second itera- 
tions and, similarly, overall dilation matrices can be 
constructed from the products of the individual ele- 
ments determined in the two cycles. The set X 2 can then 
be constructed directly from the starting set X ° from 
equations of the form (13) where the operations now 
refer to overall operations. 

Now, X 2 is a better estimate of the desired best-fit 
set than was X ~. This process is reiterated until the 
differences between the sets X m and X m-1 are suffi- 
ciently near zero. At this point then no further transla- 
tion, rotation, or dilation of the set X m will decrease U 
and, therefore, X m is the desired 'best-fit' set. 

The degree of fit is given directly by U, or by a more 
easily visualized parameter, ~, the r.m.s, average se- 
paration of equivalent points in Y and X m, 

E= V'-6//n. (14) 

e, then is a unique one-parameter characterization of 
the degree of distortion of the given polyhedron, Y, 
from the fitted polyhedron, X". If X m is an ideal poly- 
hedron, then e increases from zero as the degree of dis- 
tortion increases. The exact nature or geometry of the 
distortion can be found from a point by point compari- 
son of Y and X m. The rotation parameters may be ob- 
tained from the elements of the overall rotation matrix, 

O=arccos(tr2----~l ) where tr=r~+r22+ra3 

Yil 
Yi~ 
Yi~ 

Y J: 

i Yll 
Y j: 

r l ix t l  ri2xl2 r13xi3 0 0 0 
r2ixil r22x12 r23x13 0 0 0 
ra~x. ra2X/2 raaX~3 0 0 0 

0 0 0 
0 0 0 
0 0 0 

711Xjl 712Xj2 F13Xj3 
r21xjl F22xj2 r23xj3 
F31Xjl r32xj2 F33xj3 2 

(12) 

e 0 

m m - -  
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and the direction cosines are given by 

l =  (/'32-- r2a)/2 sin 0 
m=(r13-r30/2 sin 0 
n-- (r21 - r12)/2 sin 0. 

Applications 

A computer program has been FORTRAN-coded to 
perform these calculations. Polyhedra consisting of up 
to 33 atoms can be fitted. The coordinates of an ideal 
polyhedron may be furnished in any convenient orien- 
tation which yields simple, Cartesian coordinates. For 
example, the starting coordinates of a tetrahedron 
could be given as: 111; 111; 111; 111, even though 
these may be far from the (Cartesian) coordinates of 
the real pseudo-tetrahedron. Conversion is surprisingly 
fast. With starting orientations of less than 90 ° away 
from final orientations, conversion occurs within about 
four to six iterations. The iterations stop when, simul- 
taneously, rotational changes are less than 5 x 10 -5 
radians and dilation coefficient changes are less than 
5 × 10 -5. Some of the applications where this poly- 
hedron-fitting concept has proven to be useful may be 
given. 

No dilation 
If dilation is excluded as an operation, the procedure 

reduces to finding the rotation (and translation) which 
optimize the fit between two polyhedra. For this 
special case, the routine can be simplified and reduced 
to a simple stage iteration, or alternatively, the method 
given by McLachlan (1972) may be employed. The pro- 
gram has been used, for example, to show the pattern 
(amount of rotation and orientation of rotation axes) 
of key polyhedra in the change of the epidote structure 
with composition (Dollase, 1971). 

Isotropie dilation 
If the best fitted set can be produced by (translation), 

rotation, and simple radial dilation of a starting model 
set, then only isotropic dilation need be considered. In 
this case the dilation matrices reduce to scalar dilation 
coefficients (one for each of the symmetry-inequivalent 
sets of vectors), and the fitting routine can be reduced 
to a single-stage iteration. Examples of such cases 
would be the fitting of any isometric symmetry poly- 
hedron (e.g., regular m3m octahedron or 43m tetra- 
hedron), or in general any polyhedron in which the 
angular relationships about the origin are fixed by 
symmetry, e.g., a fivefold coordinated trigonal di- 
pyramid (two inequivalent vector sets). 

Table 1 is a compilation of the results of fitting a 
seven-atom ideal m3m octahedron (central atom and 
six ligands) to various 'distorted octahedra' whose 
parameters have been determined in X-ray diffraction 
studies found in the literature. Two points are worthy 
of note. First of all, the degree of distortion, in either 
relative or absolute terms, increases from relatively 
weakly distorted octahedra about Ti +4 in sphene 
through increasingly distorted octahedra about Fe ÷3 
to, often very distorted, octahedral coordination about 
Ca +z atoms. The second interesting point is that the 
metal-ligand distance in the best-fit octahedron is 
always smaller than the average M - L  distance of the 
observed distorted octahedron. For specific symmetry 
cases it can be shown that this relationship must hold, 
but a general proof is not evident. Comparison of the 
volume of the observed and best-fit sets (for sets of 
suitable shape to have a well-defined volume) shows 
that the volumes are also not exactly equal. For ex- 
ample, the volume of the observed M(1) octahedron in 
olivine (see Table 2) is 12.25 A 3, whereas, the volume 
of the best-fit m3m octahedron is 12.55/~3. 

Table 1. Degree of distortion of observed pseudo-oetahedra from best-fit m3m oetahedra 

Observed Fitted Absolute Relative • 
Compound Site M-O M-O distortion* distortion]" 
Sphene Ti +4 1-958/~ 1.958 ~ 0.066/~ 3.4% 
Roemerite Fe + 3 2-001 1.998 0.078 3.9 
LiFeSi206 Fe + 3 2-031 2"022 0" 126 6"2 
Pharmacosiderite Fe +3 1.990 1 "972 0.128 6"5 
Acmite Fe + 3 2.025 2.013 0.153 7.6 
Hematite ge + 3 2'031 2.007 0.154 7'7 
Epidote Fe ÷3 2.050 2.035 0.209 10.3 
Dolomite Ca ÷2 2.413 2.413 0.053 2-2 
CaNa(HzPOz)3 Ca +2 2.320 2.312 0.157 6.8 

Ca+Z(1) 2.368 2.351 0-230 9.8 
Pectolite Ca+2(2) 2.360 2.340 0.223 9-5 
Ca(OH)2 Ca ÷ 2 2.366 2-352 0"240 10"2 

Ca+2(1) 2.375 2.345 0.352 15.0 
Ca2SiO4 Ca ÷2(2) 2.414 2.358 0.408 17.3 

Ca + 2(1) 2.385 2.347 0.395 16.9 
Ca-chondrodite Ca + 2(2) 2"390 2-345 0"371 15"8 

Ca÷2(3) 2.364 2.329 0.344 14"8 

• R.m.s. deviation between fitted and observed sets, 

I" R,ra,s, d~vi~tion/(fitted M-O), 
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Table 2. Least-square fit  o f  various symmetry polyhedra 
to the M(1) and M(2) pseudo-octahedra observed in 

M(1) 

M(2) 

Symmetry 
m3m 

4 mmm 
4 mmm 
4 mmm 

2!m 
~ 2/m 
"3 2/m 

2/m 
T 

m3m 
4 mmm 
4 mmm 
4 mmm 
3 2/m 

2/m 
3 2/m 
3 2/m 

m 

olivine 

Fitted 
M-O 
2.112 
2.112 
2.112 
2.112 
2.123 
2.115 
2.118 
2.113 
2.128 

2-124 
2.124 
2.124 
2.124 
2-124 
2-125 
2.124 
2-125 
2.153 

* R.m.s. deviation between sets. 
R.m.s. deviation/M-O. 

Absolute Relative 
distortion* distortioni" 

0.248/~ 11.7 % 
0.248 11.7 
0.246 11-6 
0.246 11.6 
0-145 6.8 
0.220 10.4 
0.195 9.2 
0.239 11.3 
0 0 

0.243 11.5 % 
0.243 11.4 
0.243 11.4 
0.243 11.4 
0.243 11.4 
0.230 10.9 
0.243 11.4 
0.234 11.0 
0 0 

An&otropic dilation 
Suppose it is desired to know (e.g., in interpreting 

spectra) whether a given distorted octahedron more 
nearly conforms to a trigonally distorted octahedron, 
or a tetragonally distorted octahedron. To answer this, 
the best-fit sets with symmetry 32/m and 4mmm respec- 
tively must be found. In the first case, isotropic dilation 
is insufficient as the central angles are variable, and 
anisotropic dilation must be employed. For the ex- 
ample given, if the 3 axis of the starting model is z, then 
there are two dilation coefficients to be determined (for 
each equivalent group of vectors), namely one coeffi- 
cient to be applied to both the x- and y-axis coordinates 
and a second independent coefficient to be applied to 
the z-axis coordinates. 

Table 2 gives the results of fitting octahedra with 
symmetry m3m, 32/m and 4mmm to the M(1) and M(2) 
distorted octahedra found in olivine (Birle, Gibbs, 
Moore & Smith, 1968). As an ideal octahedron has 
four trigonal axes, there are four different ways of 
fitting a ~2/m distorted octahedron. Similarly there are 
three different 4mmm distorted octahedra. Because of 
the site symmetries (T and m, respectively) some of the 
cases are equivalent. In answer to the above question 
it can be seen from Table 2 that the M(2) octahedron 
does not approximate either simple distortion model, 
whereas the M(1) polyhedron can be relatively closely 
fitted by a trigonally distorted octahedron with 
O-M(1)-O angles of 81.4 °. 

Weighted fits 
In the above, all fitting has been done with equal 

weights. Alternatively, the individual mismatches be- 
tween the observed and fitted- sets could be separately 

weighted. For example, it might be desired to know the 
best-fitted m3m octahedron with weights proportional 
to the atomic mass of each of the atoms. As a final 
example, consider the problem of fitting a square 
planar coordination group to the distorted CuO4 group 
in CuO (Asbrink & Norrby, 1970), where the weights 
of each equation are determined by the estimated 
standard errors of the atomic parameters, o)u.j)= 
o/75). 

Table 3 compares the (fractional) coordinates of the 
observed and weighted, best-fit square planar groups 
in CuO. Owing to special positions some of the atomic 
coordinates are constrained, resulting formally in 
infinite weights. The problem is circumvented com- 
putationally by using, for these coordinates, weights of 
1 × 1012, which insures that the fitted-set atoms also 
occupy the appropriate special positions (see e.g., 
Table 3). The sum of the coordinate deviations, each 
divided by the appropriate estimated standard errors, 
is a measure of the statistical significance of the devia- 
tion between the fitted and observed sets. 

Table 3. Compar&on of  .fractional coordinates o f  
observed CuO4 and weighted best-fit square planar CuO4 

groups in CuO 

x y z 
Cu ¼ ¼ o 

(¼)* (¼) (o) 
0 0 0"4184 (13) ¼ 

(0) (0"3273) (¼) 
0 ½ --0"0816 (13) ¼ 

(½) (--0-0515) (¼) 
0 0 0"5816 (13) -¼ 

(0) (0.5515) (-¼) 
O ½ 0.0816 (13) -¼ 

(½) (0.1727) (-¼) 

* For each atom, the 2nd line coordinates, in parentheses, 
are those of the best-fit set. 
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